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CHAPTER VII  ELASTICITY THEORY OF  

     DISLOCATIONS 

 
 
 

7.1 Introduction 
 

As we have seen in the previous chapter, and in most cases, a metal's plastic deformation occurs 

through the propagation of dislocations. These dislocations can be introduced during the crystal 

formation - that is, they exist before the deformation - or they can be created during the plastic 

deformation process. In any case, each dislocation generates an elastic displacement field 

corresponding to elastic strains. These strains cause stresses that remain in the crystal even after the 

external stresses have been removed. These are generally defined as "internal stresses." Thus, 

dislocations lead to the storage of internal energy in the crystal as elastic energy. 

 

The variation of this energy with the position of dislocations is associated with self-interaction or 

Interaction with other defects. The knowledge of these interactions allows us to evaluate the force: 

 

- of the interactions between dislocations; 

- of the one created by external stress on a dislocation. 

 

Accordingly, we first calculate the stress and strain fields created by a dislocation and the 

corresponding elastic energy (in the case of an isotropic cubic crystal). 

 

The displacements ( ) and the elastic stresses ( ) have to satisfy the three following conditions: 

 

i) Satisfy Navier equilibrium equation (3.77) 

 

 
 

ii) Conserve along the dislocation line. 

 

 
 

iii) The external surfaces must be free of any force or moment. 
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7.2 Stress field around a dislocation 
 

We consider a cylinder with the axis Oz and create a dislocation line parallel to this axis by cutting 

through the plane xOz. We have a translational symmetry along z, and - as a consequence - all 

stresses, strains, and the vector must be independent of z, meaning that all derivatives with respect 

to z must be equal to zero. Navier equilibrium equation (3.77) for the displacement field , 

 

 
 

It can be written in cartesian coordinates: 

 

 

 

 
 

7.2.1 Screw dislocation 

 

a) Infinite body (in the z-direction) 

Figure 7-1: Screw dislocation in a continuous body 

 

As a first approximation, we see that the displacement field can be written intuitively in cylindrical 

coordinates (Figure 7-1) in the following way: 

 

(7.2) 

(7.1) 
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In cartesian coordinates: 

 

 
 

We can easily show that displacement satisfies conditions i) and ii). 

 

The only non-zero components of the deformation tensor in Cartesian coordinates are then: 

 

 

 
Or, in cylindrical coordinates: 

 
 

with all other components equal to zero: 

 

     

     
 

The only non-zero components of tensor expressed in Cartesian coordinates are (see equation 

(3.61)) because the diagonal components of are zero. 

 

  

  
 

In cylindrical coordinates: 

  
 

b) Finite body (in the z-direction) 

 

For a finite tube in the z-direction, the shear component produces a torque between the 

two ends of the cylinder: 

 

 

(7.5) 

(7.6) 

(7.7) 

(7.3) 

(7.4) 
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This means that condition iii) is not satisfied (forces and moments must be zero). Therefore, the 

previous solution for an infinite body is invalid. The strain tensor must be modified such that the 

stress tensor is zero on the external surfaces. Another deformation must be added for the 

corresponding surface stress: 

 

   
and to a torque: 

   
 

This torque corresponds to the elastic stresses created by torsion in the sample (Figure 7-2). A new 

field is produced, which must vary linearly with z and can be written: 

 

 

 and  

 

  from which we deduce: 

   
 

  and by equation (7.6) 

   
 

  which corresponds to the torque 

   
 

Figure 7-2: Screw dislocation in a finite body 

 

Now, let's assume: 

  
 

The constant A is obtained by writing that the sum of the torques due to and is zero. 

That is: 

  

and considering that  

       
 

and finally: 

 

  and    

 

 

(7.8) 

(7.9) 

(7.10) 

(7.11) 
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7.2.2 Edge dislocation 

 

a) General case 

Figure 7-3: Dislocation in a continuous body 

 

The displacement field is not as simple as before. However, in a general way, we show (cf. Hirth & 

Lothe pages 71-74) that the displacement field satisfying the three conditions i) ii) and iii) can be 

written in cartesian coordinates: 

    
 

   
 

and obviously . 

 

b) Simplified case 

 

The previous relations can be simplified for boundary conditions of infinite continuous (          and  

         ), such that: 

 

      
 

     

(7.12) 
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Let: ; the stress tensor is in cartesian coordinates: 

 

    
 

    
 

 

 In cylindrical coordinates: 

   
 

      

Inserting these expressions in Hooke's law (Chapter 3 Eqn. 3.69): 

 

            
 

We can get the components of the strain tensor in cylindrical coordinates: 

 

,     ,     

 

Remarks: 

 

• in any case, the stresses decrease as 1/r, and they diverge when  

• the stress tensor corresponding to screw and edge dislocations is orthogonal in an infinite body 

 

7.3 Elastic energy 
 

A stress and strain field around a dislocation implies that a specific elastic energy is embedded within 

the crystal. In the framework of Hooke's law (linearity between stresses and strains - equation (3.69) 

), the elastic energy stored per unit volume can be written as: 

       

The energy of a dislocation line can then be calculated knowing and by using   

 

7.3.1 Screw dislocation 

 

The energy density for a screw dislocation of finite length is given by: 

 

     

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 
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We can then calculate the stored energy of a dislocation line per unit length by integrating over the 

volume of an elastic cylinder of a unit length between the radius and : 

 

     
This integral yields: 

      

and since  

             
 

and in the case of a screw dislocation in an infinite cylinder, we have (you can derive it as an exercise): 

       
Remarks: 

 

• W has dimensions of energy per unit length. 

• The difference between the case of an infinite and finite body is the relaxation occurring on the 

surfaces, which decreases this energy. 

• W goes to infinity when goes to zero. Since the stress tensor of the dislocation core is unknown, 

the total energy is usually written as , where corresponds to the energy at the 

dislocation core . 

The value given to is discussed in § 7.3.4. 

 

7.3.2 Edge dislocation 

 

In this case, the energy density is (simplified case): 

  

That is, using the previous expressions of and (7.2.2 b): 

 

  
and integrating as before: 

 

  
We finally get: 

  

(7.18) 

(7.19) 

(7.20) 

(7.21) 
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As for the screw dislocation, the total energy is equal to , where corresponds to the 

energy of the dislocation core. 

 

Remarks: 

 

• In general, ν ~1/3 → the energy of an edge dislocation is slightly higher than that of a screw 

dislocation. 

• The elastic energy increases as R goes to infinity. Therefore, although R is finite (boundary of the 

crystal), the energy associated is relatively high. In common metals, the value of this energy cost 

ranges between 5 to 10 eV for an atomic plane cutting through a dislocation line. This is why 

dislocations cannot spontaneously appear by thermal agitation (thus, dislocations do not correspond 

to states of thermodynamic equilibrium of the crystal). 

 

7.3.3 Mixed dislocation 

 

In the case of a mixed dislocation for which forms and angle ψ with ξ, it is sufficient to take the 

screw and edge components of  and add their contributions for both types of dislocations (the 

respective stress tensors being orthogonal) so that we have: 

 

  
 

In a more compact form: 

 

  
Remark: 

 

We note here that in classic elasticity theory, the elastic energy W of dislocation is - no matter its 

type - proportional to . This means that, for any crystal structure, only a few Burgers vectors, 

corresponding to the shortest lattice translations, generate stable dislocations. The other dislocations 

tend to dissociate into more stable elements spontaneously. 

 

 

7.3.4 The problem of the dislocation core 

 

Until now, we have considered that when r → 0, the dislocation is at the center of an empty cylinder 

of internal radius . 

 

What happens in a perfect crystal? The linear elastic relations can be considered valid for values of 

strain up to ε ~10% (i.e., until stress equivalent to the theoretical maximum yield stress, σ=μ/10, that 

was calculated in § 6.2.1), which corresponds for a screw dislocation to a core radius of: 

 

  
 

(7.22) 
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a) Case of a filled core  

In this case, a lower bound on the core energy can be 

estimated by assuming that the deformation in the central 

zone is uniform and equal to the one for (Figure 7-

4), for example, for a screw dislocation of infinite length, 

such that: 

  
 

per unit length. 

Using (7.4) and (7.6) 

 

   
Figure 7-4: Deformation of the core 

 

The upper limit is the one that corresponds to the latent heat of fusion of a unit-length cylinder of 

radius - (L. Bragg, Symposium on internal stresses, London, 1948), with an average 

value around the mean:  

 

 

The total energy of a screw dislocation in a finite body is then equal to: 

 

𝑊𝑡 = 𝑊 + 𝑊0 =
𝜇𝑏2

4𝜋
ቆቀ𝑙𝑛

𝑅

𝑟𝑐
ቁ +

4𝜋

5𝜋
ቇ =

𝜇𝑏2

4𝜋
ቀ𝑙𝑛

𝑅

𝑏
+ 𝑙𝑛

𝑏

𝑟𝑐
+

4𝜋

5𝜋
ቁ ≃

𝜇𝑏2

4𝜋
𝑙𝑛

𝑅

𝑏
   

 

This corresponds to considering a filled core dislocation in a crystal equivalent to a dislocation with 

an empty core of radius b in a continuous elastic body. The formula (7.24) constitutes a good 

approximation of the energy of a screw dislocation. For a general dislocation, work can be defined 

as,
   

 

 

with     

 

b) Hollow core dislocation 

 

We consider now the case of an extended core: 

 

 

where γ is the surface energy of the crystal, and we assume implicitly that . This energy has a 

minimum. 

  
which corresponds to the following: 

  
 

(7.23) 

(7.26) 

𝑊0 =≈
𝜇𝑏2

5𝜋
 

(7.24) 

(7.25) 



 

page 128 Chapter VII Physics of materials 

where we assumed that the surface energy is                   theoretical elastic yield stress  (where a is 

the lattice constant), corresponding to the cleavage energy. It is clear that to have a hollow core 

dislocation,          , which according to (7.26) becomes . Thus, dislocations with hollow 

cores have large Burgers vectors. 

 

 

7.4 Interaction energy between dislocations 
 

We should distinguish between the self-energy of a dislocation and the interaction energy between 

two dislocations. For example, consider a solid containing two dislocations, A and B, responsible for 

the stress fields and and the strain fields and . The superposition principle dictates: 

 

  

  
 

As a consequence, the total energy becomes: 

 

  
 

The first two terms represent the self-energy of each dislocation. The last two terms are equal because 

of Hooke's law (you can prove this statement as an exercise), and their sum represents the interaction 

energy. 

 

  
 

For calculating this integral, consider a dislocation loop A with contour C and a general surface S 

bounded by this loop (Figure 7-5). We define a normal vector on this surface. 

 
Figure 7-5: Surface S encircling the integration contour C

(7.27) 

(7.28) 

(7.29) 
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Dislocation A was obtained by cutting along a general surface delimited by contour C and moving 

one side with respect to the other by a distance . Our integral can then be evaluated on a volume 

bounding the sliding surface, keeping in mind that : 

 

 where  

 

By the equilibrium equation (3.26),  

 

Applying the divergence theorem  

  
 

If we take the surface drawn in Figure 7-5, the side that has slipped (for example, the top surface) 

gives and the other , so that: 

  

 

7.5 Force on a dislocation 
 

7.5.1 Definition 

 

Knowing the interaction energy between two dislocations makes it possible to calculate the force 

applied by one dislocation on the other, which is given by: 

  

Let be a loop with a Burgers vector , the variation in energy when an element is displaced 

over a distance by an external stress is (Figure 7-6): 

 

  
Using: 

  
We get: 

  
 

As the variation does not depend on the displacement of the arc we have: 

  
Figure 7-6: Strain of a dislocation loop

(7.30) 
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We obtain then: 

  
 

 As such, for a dislocation portion of length L, the force is: 

 

  
 

That is, the force required to move the dislocation under the external stress  in Eqn. 7.31 is called 

the Peach and Koehler equation. This relation shows that the force is perpendicular to the line 

element, which confirms the intuition that a displacement along the dislocation line does not influence 

the system's configuration. 

 

 

7.5.2 Applications 

 

a) Forces acting on a dislocation 

 

Consider an edge dislocation determined by the right-handed Cartesian coordinate system ( ) 

as defined previously in § 6.2.3. For example, we then have the following (Figure 7-7): 

 

 

• A force in the perpendicular plane to the glide 

plane, defined by its normal and equal to: 

 
This is a climb force at high temperatures. 

 

• A force parallel to the dislocation line: 

 
 

• A force in the glide plane: 

 
 

     or else  

 
Figure 7-7: Direct trihedron of the dislocation 

 

The last expression for means only the shear stresses can move the dislocation in its glide plane. 

 

 

b) Interaction between two parallel screw dislocations 

 

Consider two parallel screw dislocations with Burgers vectors and 

respectively (Figure 7-8). 

 

(7.31) 
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The stress field due to the dislocation with Burgers 

vector is given by: , which corresponds 

respectively to a radial force between the two 

dislocations: 

 
 

and a tangential force: . 

Considering that we can simplify this in: 

 

 
 

 

This is equivalent to saying that dislocations attract or repel each other depending on whether they 

have opposite or equal signs. 

 

c) Interaction between two parallel edge dislocations 

 

Consider two edge dislocations with Burgers vectors and respectively 

(Figure 7-9). The two dislocation lines are aligned with the axis z so that the only components of the 

interaction forces that count are those in the x and y directions: 

 

and  

 

The force component in the glide plane is then (exercise): 

 

  
 

The climb component perpendicular to the glide plane is: 

 

  

Note here that this climb force acts effectively only at high temperatures ( where is the 

melting point or fusion temperature in the notation) as the displacement of the dislocation line out of 

its glide plane requires absorption or emission of point defects, which are formed much faster at high 

temperatures. Considering that the two dislocations are confined in their glide plane (no climb 

assumed), the equilibrium positions of these two dislocations correspond to , that is: 

and  

which are not all stable equilibrium positions. It is clear that the stability of these equilibrium positions 

depends on the sign of , that is: 

(7.32) 

(7.33) 

Figure 7-8 : Interaction between two screw dislocations 
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• If the two dislocations have the same sign, and the stable equilibrium positions correspond 

to: 

- θ = 0 or π, the two dislocations are at infinity one from the other; θ = π/2, the two dislocations 

are in the same plane, that is to say, one underneath the other. 

• If the two dislocations have opposite signs (dipole), and the equilibrium positions 

correspond to . 

 

Any other position is unstable. 

 

 

7.5.3 Interaction with surfaces: image forces 

 

In the previous sections, we simplified the calculations by considering that dislocations were 

essentially in an infinite body that assumes surface effects are negligible. However, when a 

dislocation is close to the surface, what are the stress fields of a dislocation in a crystal of finite 

dimensions? What is the interaction between dislocations and surfaces? 

 

Consider a semi-infinite body limited by a free surface S and a screw dislocation parallel to this 

surface and situated at a distance d. We saw that the self-energy of a screw dislocation is given by 

(7.24): 

  
 

Therefore, the self-energy of this dislocation decreases with distance d from the surface S to the 

dislocation, which is equivalent to saying that the surface attracts the dislocation. The attractive force 

can be calculated by considering the boundary conditions, i.e., the surface S must be stress-free.  

For this case, consider two parallel screw dislocations, A and B, at a d distance and with opposite 

vectors (dipole) in an infinite body with a shear modulus μ. We can calculate the stress and strain 

tensors in any point M of this body, and we note that there are no stresses on the median plane between 

the two dislocations. 

We can then cut along this plane without 

introducing new stresses, and we have the initial 

problem of one screw dislocation and a surface. In 

this configuration, dislocation B is called the image 

of dislocation A. 

 

Dislocation A is attracted by its image B with force 

per unit length equal to (7.32): 

 

 
 

This force represents approximately the interaction 

force between the screw dislocation A and the 

surface S. A similar approach can be adopted for 

edge dislocations.   
 

 
Figure 7-10 : The dislocation A is attracted by its 

image B and thus by the surface 
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The elastic energy of a dislocation depends linearly on the 

elastic modulus of the body. Thus, if  μ1 > μ2, the 

dislocation tends to move towards body 2; in the opposite 

case, it moves away from the interface. 

 

 

 

 

 

 
Figure 7-10: Interaction with a surface between two 

          bodies with different elastic moduli 

 

 

7.5.4 The concept of line tension 

 

A dislocation with a specific energy W per unit length tends to minimize its total energy by reducing 

its length. Similar to a soap bubble or a balloon that tends to reduce its surface area under a surface 

tension, a dislocation loop tends to reduce its diameter due to a line tension τ in the direction of the 

line. 

 

We attribute a dislocation line tension (𝜏) as the ratio between the energy variation dW and the 

variation in length that caused it, dl: 

  
 

In other words, the line tension represents the tangential force, which should be applied at point M of 

the dislocation line to keep the same configuration after a cut in the line is made at point M. 

 

7.5.5 Interpretation of the line tension 

 

Consider an arc of dislocation AB, belonging to a dislocation loop with Burgers vector . The arc is 

at equilibrium in its glide plane and is submitted to external stress (Figure 7-11). 

 

The force to which this arc is submitted because of the external stress, 

according to Peach and Koehler, is : 

 

     
 

Since the loop is considered at equilibrium, the segment AB is also at 

equilibrium so that there is a restoring force (Figure 7-12): 

 

     
 

Figure 7-11 : Dislocation loop 
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We can replace this restoring force with two 

tangential forces acting at the two ends, A and 

B, of the arc of the dislocation, such that: 

 

  
 

Considering the dislocation as an elastic line 

(approximation of the line tension), the work 

required to stretch the arc AB by a length dl/2 from 

each side is: 

 

 
which means that . 

 

Figure 7-13: Equilibrium of forces on an arc of dislocation 

 
Figure 7-14: Diagram showing the concept of line tension 

 

It is not hard to see that, if we neglect the variation in energy of the dislocation line according to the 

type of dislocation, the line tension τ is equal to the work (W) per unit length. We must remember 

that the energy calculated in (7.19) is a measure of energy per unit length:  

 

 
 

For an increase in length dl, and thus: 

 

  
 

A value of to is typically used as line tension in the framework of the 

classic isotropic theory. 

(7.34) 
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7.5.6 Application: Frank-Read sources 

 

Consider a segment of dislocation of initial length l (Figure 7-14), anchored to its two ends, A and B, 

and submitted in its glide plane to a shear stress . Under this stress, each element of length dl of 

this dislocation segment is subjected to a force /normal, which lies in the glide plane.  

 

According to Peach and Koehler equation, the 

absolute value of this force is given by: 

 

    
 

The problem comes down to determining the 

equilibrium configuration of an arc such as MM '

of length dl and submitted to a stress  (Figure 

7-14). This arc is submitted to the force due 

to the stress from one side and to the line 

tension from the other side, which is applied in M 

and M 'by the rest of the arc. 
 

 

Let R be the curvature radius of the element 

MM 'and dα the angle it intercepts from the 

center of the curvature. Then, from the geometry 

shown in Figure 7-15, we have: 

 

  
Assuming : 

  

 

 

If the assumption stating that the line tension τ is independent of the orientation of the line holds, the 

previous relation means that the curvature radius of each element dl is a constant, and as a 

consequence, the curvature of the arc AB is also constant so that the arc AB is in the shape of an arc 

of a circle. Obviously, the arc AB at equilibrium cannot be obtained for any value of . Therefore, 

the curvature radius R must be longer than l/2 for a particular configuration to be stable. In other 

words: 

 

  
 

The arc AB can remain at equilibrium, in the "rest" position, as long as the shear stress does not 

exceed the threshold stress . If the stress is greater than this limit, the equilibrium is broken, 

and the Peach -Koehler force prevails over the line tensions τ, leading to the dislocation bowing and 

forming the arc shown in Figure 7-16, creating a dislocation loop in addition to the segment AB. 

(7.35) 

(7.36) 

Figure 7-15 : Equilibrium of forces and line  tension on a 

dislocation arc 
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Figure 7-16: Frank-Read source 

 

This process can continue if the stress on segment AB does not go below the equilibrium critical 

value. This mechanism of dislocation multiplication is called the Frank-Read source. It is frequently 

observed in electron microscopy (Figure 7-16). 

Figure 7-17: Frank-Read source in Si decorated by Cu 

 

The stress required for dislocation multiplication via this mechanism is low. For a dislocation density 

ρ ≈ 1010 m/m3, the average length of segment AB can be estimated as around 10-5 m.  

 

Considering a line tension τ ≈ 0.5 μb2, we get a critical stress, e.g., 

MPa for copper.
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7.6 Dislocations in FCC metals 
 

The microstructure, i.e., the arrangement of dislocations in materials, depends heavily on the crystal 

structure. This section describes, more specifically, dislocation arrangements in the FCC structure. 

 

7.6.1 Shockley partial dislocations 

 

FCC structures have sequences ABC ABC ABC {111} closed-packed plane stacking. The Burgers 

vectors of a perfect dislocation must join two lattice points. This vector must have a minimum length, 

so the most probable Burgers vectors are 𝑎/2[110] to minimize the elastic energy of the dislocation. 

 

 

 
Figure 7-18: A perfect dislocation is broken down into two additional planes (a) and in a dissociated dislocation (b) 

 

In Figure 7-18, we have represented an edge dislocation with Burgers vector 𝑎/2[110], which comes 

from inserting two extra planes. The horizontal plane (dislocation plane) is the plane (111) on which 

we have represented the corresponding Burgers vectors. The dislocation has a direction . We 

can understand that these two extra planes tend to repel and move away from each other, but we can 

also guess that this changes our physical understanding of dislocations. 

 

a) 
b) 
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Figure 7-19:  Atomic arrangement in a stacking fault 

 

In Figure 7-19, we have tried to represent what happens when two planes move away from each other 

(Figure 7-19 is turned by 90˚ compared to Figure 7-16). The big circles represent the first layer A 

(located just "below" the dislocation). The small circles with full lines represent layer B; they must 

be located initially on ∇ triangles, but two extra planes force the atoms between these planes to take 

place on ∆ triangles (position C). The same goes for layer C, represented in Figure 7-19 by the dotted 

circles. Thus, considering the stacking between the two inserted planes, we notice that it is found in 

the form: 

 

 
 

We conclude that a stacking fault appears between the two inserted planes. 

The dislocations that bound this defect are of a very particular kind: the Burgers vector associated 

with the one on the left is , and the one on the right-hand side has a vector . 

These are Shockley partial dislocations. We note that the initial perfect dislocation decomposes in 

two partial dislocations following Frank's formula: 
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We can see that this dissociation is energetically favorable because the angle between and is 

120˚ and as a consequence: 

  
 

We note that a partial dislocation has the following characteristics: 

• Its Burgers vector is not a lattice vector, 

• It is not surrounded by pristine crystal but bounds a stacking fault. 

 

This second point forces us to review the energy problem suggested before. If the two partial 

dislocations decrease their elastic interaction energy by moving away from one another, they create 

a stacking fault surface. Therefore, we can guess that the equilibrium position (the distance d between 

two dislocations) depends on the energy of the stacking fault γ (Figure 7-20). 

 Figure 7-20: Interaction between two dislocations determined by an equilibrium distance (the width of the defect) d 

 

At equilibrium, we have: 

  

  
We can show (exercise) that: 

  
 

where the indexes e and s indicate the edge and screw components of the Burgers vector of dislocation 

I and II. In the case of two Shockey dislocations: 

(7.37) 

(7.38) 
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Thus, (7.37) can be written as: 

  
 

That gives: 

  
Applications 

 

Copper:     

 

Aluminum:     

 

Remark 

 

Measuring stacking fault width (d )with electron microscopy can be used to calculate the stacking 

fault energy, γ. However, measuring d < 10 Å using standard diffraction imaging techniques is 

challenging, requiring aberration-corrected TEM, e.g., high-angle annular darkfield scanning TEM. 

This method cannot measure energies greater than γ > 5 erg cm-2 in these conditions. Therefore, this 

method does not apply to the case of pure metals. On the contrary, in graphite, Delavignette and 

Amelinckx measured an energy of γ = 0.53 erg cm-2. 

 

 

7.6.2 Thomson tetrahedron. Frank partial dislocation, Lomer-Cottrell dislocation 

 

a) Thomson tetrahedron 

 

Using the Thompson tetrahedron, we can represent the group of perfect and imperfect dislocations 

and their reactions in an FCC structure. We use the fact that the four families of planes {111} can be 

represented by the four faces of a regular tetrahedron (Figure 7-21). Each edge corresponds to a 

vector, 𝑎/2 < 110 >  the Burgers vector of a perfect dislocation. The vertices of the tetrahedron are 

called ABCD. The face on the opposite of A is called face a, and its center of gravity is α; the same 

goes for b and β, c and γ, d and δ for the faces on the opposite sides of the vertices B, C, D, 

respectively.

(7.39) 

(7.40) 
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Figure 7-21: Thomson tetrahedron 

 

This tetrahedron can be developed around the triangle ABC. The result is shown in Figure 7-22. 

Figure 7-22: Thompson tetrahedron expanded in 2D 

 

Two Latin characters represent the Burgers vector of perfect dislocations   

(   or     ); the Burgers vector of a Shockley dislocation can be represented by 

a Greek character and a Latin character, as follows:   

 

Remark 

 

The dissociation of a perfect dislocation in two Shockley partial dislocations associates with a Burgers 

vector a pair of vectors (  ); the very notion of pair implies that these two terms are not 
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interchangeable; in practice, this means that in Figure 7-19 we cannot interchange the Burgers vectors 

and . In a more general way, we can give the following rule: "When we look at Thomson 

tetrahedron from the outside and dislocations in its positive direction, then this dislocation with 

Burgers vector  dissociates in two partial Burgers vectors to the right and to the left. We 

invert these elements if we look at Thompson tetrahedron from the inside".  

Another way of remembering this rule is to consider that a "Latin-Greek " can be to the right, and 

a "Greek-Latin " can be to the left. 

 

b) Sessile Frank partial dislocation (Frank partial) 

 

We have seen that an imperfect dislocation could be defined as the crystal's boundary of a stacking 

fault. For a Shockley dislocation, if the stacking fault is created via sliding a close-packed plane on 

another, a stacking fault is made by taking away a part of a close-packed plane by condensing 

vacancies, for example. The boundary between the stacking fault and the perfect crystal is a Frank 

partial dislocation; its Burgers vector is average to the plane {111} of the stacking fault, and its 

modulus is in the form  𝑎/3 < 111 > If we return to the Thompson tetrahedron, we note that 

for a stacking fault in the A plane. 

 

Similarly, the precipitation of interstitials yields a Frank dislocation, which bounds an extrinsic 

stacking fault. We note a substantial similarity between these Frank loops and the prismatic loops 

described previously. Nevertheless, a Frank dislocation cannot "slide," for its glide plane is not a 

{111} type. This dislocation is called then "sessile." It can move, however, by a climb motion, even 

a "conservative climb." 

 

 

c) Lomer dislocation 

 

Consider, for example, the planes a ( ) and b ( ). Their intersection is 𝐶𝐷ሬሬሬሬሬറ (Figure 7-23). Now, 

consider a perfect dislocation parallel to 𝐶𝐷ሬሬሬሬሬറ in each of these planes, their Burgers vectors are, 

respectively: 

 

- for the dislocation in a 

- for the dislocation in b 

 

For energy reasons, these two dislocations attract each other and form CD, a new perfect dislocation 

with the following Burgers vector: 
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The two initial dislocations are of mixed type, 

whereas the resulting one is a pure edge dislocation.  

 

 

 

 

 

The plane is defined by its direction, and the Burgers 

vector is the plane (1 0 0), which is not a glide plane 

in an FCC structure.  

 

 

 

 

Consequently, this dislocation is sessile and is called 

a Lomer dislocation. It is a barrier for other 

dislocations in planes (111) and ( ). We also 

typically refer to this dislocation structure as a 

Lomer lock. 

 

 

 

 

 

 

 

d) Lomer-Cottrell dislocation 

 

Consider now the same problem as before, but suppose that the stacking fault energy is low enough 

for the two initial perfect dislocations to dissociate in two Shockley imperfect dislocations in the 

following reactions: 

 
  

 
 

Considering the dissociation order (cf. previous remark), we arrive at Figure 7-23b. On CD, the two 

dissociated dislocations with Burgers vectors and can combine (Figure 7-23c) and form a 

new dislocation with Burgers vector . This new dislocation is called a stair rod. The 

dislocation line is located along one side of the Thompson tetrahedron, and its Burgers vector is here 

in the form , joining the middle of the faces of this tetrahedron.  

 

These dislocations (stair-rod) can also enable a different kind of reaction. For example, consider a 

dislocation line spanning from plane c to plane d and with Burgers vector  (Figure 7-24). 

Figure 7-23 : Formation of a Lomer lock (a) and 

recombination of Shockley partials forming a sessile 

Lomer dislocation 
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Figure 7-24: Formation of a stair-rod dislocation at the intersection of planes with an acute angle 

 

This dislocation can dissociate in the c plane following the reaction and in the d plane as 

. The dissociated dislocations at the intersection between two planes form a stair-rod 

dislocation with Burgers vector . 

Not every stair-rod dislocation is in the form . For example, we choose an obtuse angle instead of 

an acute angle between the planes. Then, the dissociation of the dislocations is inverted on the plane 

seen from the outside of the Thompson tetrahedron (Figure 7-25). 

 

At the intersection between the two planes, the 

dissociated dislocations combine and form a stair-rod 

dislocation with Burgers vector  

 

We can also imagine stair-rod dislocations with a 

Burgers vector of the form: 

 

   

 or  

 

 

 

 
Figure 7-25: Formation of a stair-rod dislocation 

 

Notation.  

represents the fixed vector linking P to Q. represents a vector equal to twice the vector 

joining the middle of PQ to the middle of RS. We can show easily by vectorial operations that: 
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The conditions for the stability of these dislocations are related to the energy conditions (if 

dissociation occurs, if combination does). The displacement of stair-rod 

dislocations - in the glide plane as in the climb direction - is very difficult: these are "super-sessile" 

dislocations, strong barriers against the motion of other dislocations. 

 

 

7.6.3 Observation after quenching of samples at high and low stacking fault  energy 

 

In the micrograph shown in Figure 7-26, we can observe a sample of aluminum quenched at the 

temperature of 550˚C. The left image was taken immediately after the quenching and vacancy defects 

had gathered to form platelets surrounded by Frank dislocations. 

Figure 7-26: Sessile dislocation loops (Frank) in Al3.5%Mg. Micrograph a) is taken immediately after quenching from 

550˚ C to -20˚C. On the right (b), the sample has been heated in the microscope. We can observe the disappearance of 

the stacking fault A. The dislocation has become perfect 

 

The dynamical diffraction scattering contrast of stacking faults in TEM images appears as a set of 

characteristic stripes. The loops visible here are hexagonal, and the sides of the loops are parallel to 

the dense directions of the plane,         . On the right, the sample has been annealed, and we note that 

inside one of the loops, the stacking fault has disappeared, but the profile is still there; it can only be 

due to a perfect dislocation. 

 

 

The micrograph in Figure 7-27 shows a gold sample 

that has also been rapidly quenched, though the result 

is quite different. Again, we see defects in the shape 

of tetrahedrons appearing, having sides comprising a 

stacking fault. 

 

 

 

 
 

Figure 7-27: Tetrahedral loops in quenched gold. 
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Such a difference between gold and aluminum should be attributed to the difference in the energy 

of stacking faults in the two metals, which are very different ( erg/cm2, erg/cm2).  

We now consider the two cases separately. 

 

a) High stacking fault energy (Aluminum) 

 

We assume the Frank dislocation loop is located in a {111} plane, and its Burgers vector is 

. 

Figure 7-28: Stacking fault in a Frank loop 

 

Considering Figure 7-28, we note that we can make the stacking fault disappear by moving the atoms 

from B to A and those from C to B, etc. 

 

This operation is identical to creating a Shockley loop with 

Burgers vector and                              letting it grow within the 

defect (Figure 7-28). 

 

 

The Shockley and Frank dislocations combine to give a perfect 

dislocation: 

 
 

This reaction is only possible if the stacking fault energy is high 

enough, which is the driving cause of the operation. 

 

 

 
Figure 7-29: Reaction between Frank and Shockley partial dislocations 

 

b) Low stacking fault energy (Gold) - tetrahedral defects 

 

As for aluminum, vacancies in oversaturation tend to reassemble into compact platelets following the 

planes {111} encompassed by a Frank dislocation. Although the stacking fault energy is low, a 

process as in Figure 7-29(a) cannot occur. On the other hand, we can understand that the sides of the 

defect orientate themselves following the close-packed directions, forming a triangular shape. If the 
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base plane is a plane ( ), Frank dislocation has the shape drawn on Figure 7-30a with Burgers 

vector . 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7-30: Formation process of tetrahedral defects starting from a Frank loop 

 

Considering the dislocation B'C', the Thompson tetrahedron indicates that this dislocation can 

dissociate in the d plane following the relation , which is energetically favorable. In 

the same way, for C'D 'and D'B ',the Frank dislocation dissociates in a stair-rod dislocation and a 

Shockley dislocation (Figure 7-29b). The stair-rod dislocations are stable but push away the Shockley 

dislocations in their glide plane, creating a stacking fault between them (which does not matter much 

as the stacking fault energy is low). We can see in Figure 7-29b that Shockley dislocation B'C 'and 

C'D ' meet following A'C'. Their combination is also energetically favorable, and the new Burgers 

vector is: 

  
 

Similarly, following D'A' and B'A  

 

  
 

This final result is a tetrahedron completely bounded by intrinsic stacking faults and stair-rod 

dislocations of type . 

 

7.6.4 Measure of the energy for a stacking fault 

 

We have seen that - in theory - we could calculate the stacking fault energy from the distance of 

dissociation of a dislocation ( Figure 7.40). However, this method is only applicable for energies < 5 

erg cm-2. A slightly different method is possible because dislocations in a close-packed plane can 

interact and form junctions. In Figure 7-30a, we note that junction P is due to the intersection of three 

perfect dislocations with Burgers vectors in the plane ( ). These three dislocations 

tend to dissociate and form an extended junction (Figure 7-31c). Figure 7-31 shows the formation of 

these extended junctions from the dissociation in partial dislocations. 

 

(a)  (b) 
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The geometry of extended junctions is related to the stacking fault energy γ. As a first approximation, 

neglecting the interaction forces between dislocations, we can state that the force due to the fault 

energy variation opposes the restoring force of the line tension from the Shockley dislocation on the 

boundary of the junction. 

 

 

τ = line tension = αμb2
s , R = radius of curvature, Burgers vector of Shockley partial. 

Figure 7-31: Formation of an extended junction. Thompson tetrahedron is seen from the outside. 

 

We can thus calculate γ by determining the curvature radius of Shockley partial at a junction location. 

 

The junctions do not lead to a representation like the one in Figure 7-31. If two dislocations with 

Burgers vectors and are permuted, we arrive at the case in Figure 7-32. We note that the 

partial dislocations (e.g., ) cannot recombine because they are in the wrong order. We do not 

obtain an extended junction but a contracted junction. 

Figure 7-32: Formation of a contracted junction. Thompson tetrahedron is seen from the inside.
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Often, under the effect of the line tension, the dislocations located in a close-packed plane tend to 

rearrange into a hexagonal structure (Figure 7-33). In these conditions, we observe alternating 

extended and contracted junctions. 
 

Figure 7-33: Formation of a network of junctions 

 

Figure 7-34 shows an electron microscopy observation of hexagonal structured junction arrangements 

in a deformed Al-Cu alloy. 

Figure 7-34: Network of extended and contracted junctions  observed in Cu8%Al after 5% strain 

 

7.6.5 Cross-slip 

 

The dissociated dislocations tend to move as a whole by keeping the width of the stacking fault 

constant. Therefore, it is hard to predict if the Peierls stress is higher or lower in the case of dissociated 

dislocations or the presence of perfect dislocations. However, cross-slip is more complicated. In 

principle, dissociated screw dislocations cannot produce cross-slip because each imperfect 

dislocation has an edge component, and these must remain in their dissociation plane. On the other 

hand, partial dislocations may recombine, and they could change their glide plane by doing so.
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In Figure 7-35, we have represented three stages corresponding to the cross-slip of a dissociated screw 

dislocation changing its glide plane from ( ) to ( ). At first, the dislocation contracts at a 

distance . Then, the dislocation now has a pure screw segment, and the cross-slip can develop in 

the plane ( ). This phenomenon happens especially when the dislocation meets a barrier of sessile 

dislocations, causing the shrinking of the stacking fault domain. Energy must be supplied to achieve 

this recombination; thus, the cross-slip is more common in metals with high stacking fault energy 

(e.g., Al). 

 

This affects the behavior of metals during their deformation. In particular, since the formation of a 

constriction could be thermally activated, cross-slip increases with temperature. 

Figure 7-35: Diagram of the cross-slip phenomenon in the presence of dissociated dislocations 

 

Regarding the intersection of two dissociated dislocations, we simply note that before crossing each 

other, they must recombine near their intersection, followed by a cut and creation of other jogs. 

Therefore, it is necessary to supply extra energy to create a jog in the presence of dissociated 

dislocations. This energy depends on the stacking fault energy. We can argue similarly for a stacking 

fault crossing a dislocation. Figure 7-36 shows some stacking faults in a copper alloy. The leading 

partial dislocations are blocked by the preexisting defects (arrow). The partial dislocations can also 

deviate, leaving behind them stair-rod dislocations.
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Figure 7-36: Stacking faults and cross-slip in Cu-10%Fe 


